"Sensors with Wings"

Tailored Small UAV Systems for Earth Science Research

Geoff Bland, Ted Miles

757-824-2855

High Altitude UAVs: NASA's Traditional Focus

Small UAVs for Earth Science

Commercially Produced and Operated Platforms

Radio Control Prototypes

Microspectrometer for Ocean Color

<u>MagPlane</u>

- Magnetometer for Iturralde Crater Expedition (ICE 2002), Waselewski, et al
- Instrument and Data Systems Exceeded Volume and Weight Limits (>40 lb Gross Weight)
- Deployed to Bolivia

"UAVs are not for the Faint of Heart"

(industry executive)

Electric Propulsion

Significant Evolution of Battery Technology

Electric Propulsion

Tests with Batteries of Similar Mass

Battery Comparison: Thrust vs Time

"Hacker 40-10L" Motor, 12"x8" Propeller, ~10 Volts, <20 Amps

Infrared Imaging

Color

geoff.bland@nasa.gov June 2006

Infrared

<u>ImageAire Lite ii</u>

Very-Mini UAV for Geothermal Observations

- Created for geothermal mapping experiments in Yellowstone National Park
- Suitable for agricultural research and sensor tests
- Infrared, visible, and narrow band (filtered) cameras with real-time video link
- Includes GPS, temperature, humidity, and pressure measurements, provisions for miniature Anasphere carbon dioxide sensor
- Six pound total weight, assembles in ten minutes
- Suitable for standard shipping

Other Very-Mini UAV Examples

Microprobe (4.5 lbs): Visible, Thermal IR Video Downlink, GPS, T/RH/P Follow-on to ImageAire series, Aeros 100 & 200 (Coronado, et al)

XPi-SO2-1 (2.5 lbs) with Sulfur Dioxide Sensor for Volcano Plume Research (Pieri, et al)

Critter Chaser with embedded Yagi antenna and receiver for Animal Tracking (Wilkelski, et al)

Radstar/Aerotenna

- Miniaturized L-Band Radiometer
- 100 meter Resolution Goal
- Salinity, Soil Moisture, Snow, Ice
- 12 lb Operating Weight

Airborne Science Training Initiative

(ASTI)

- Ultra-Low-Cost Training and Imaging UAVs
- UMES Aviation, Science, Engineering, & Technology Students & Faculty
- Includes Industry, Other University, Other Government Agency Participants

geoff.bland@nasa.gov June 2006

Aeroids for Cloud/Storm Research

- Ultra-Mini, Balloon-Launched Probes
- 1-6 lbs: Compare to Radiosondes and FAA/FAR Part 101
- Miniature Sensors and Systems are Emerging
- Potentially Suitable for Volcano Research

XAP: Balloon Launched Mini-UAV Proof-of-Concept Tests 1993-2001